Page 5 - 5SatzefürStreicher
P. 5

3





                                                                          
                                                                                            
           33                                                                                 
                                                                                      
                                                                       3            3    
                    
                                                                                            f
                                                                                                      
                                                                            
                             3                                             
                                                                                  
                                                                                                          
                                                  
                                                                                       
                                                                                            
                                                                                                     
                                                                                                   
                                  
                                                                                            [ f ]
                                                                             
                                                                                        
                                                                                            
                                                                                       
                                                                                     
                                                                                       
                                                                                            f
                                                                          
                                                                                             
                                                                           
                                                                                        
                                                                                                        
                                                                               
                                                                               3                        
                                                   3                                        f
                                                                                                      
                                                                                                          
                                                                          
                         
                                                                  
                                                                                        
                                                                                   
                                                                               3                         
                                                    3                                       f
                                                          
           38                                               
                                                                                
                                                                                         
                                                                              
              
              p
              geteilt                                                                        
                                                                                              
                                                                                    
                                                                                                  
                                                                                           
                                                                                                     
                                                                                                            
              p
                                                                                                
                                                                                                
                                                                                                 
                                                                                            
              p
                                                                                
                                                                               
                                                                                                  
                                                                                              
              p
                                                                                   
                                                                                               
                                                                                                      
              p
                                                                  3
           44
                                                                                                      
                                                                            
                                                     
                   p                                                                           mf
                                     pizz.                         Bog.
                                                                               
                                         
              p                                                    f  p
                                     pizz.                           Bog.
                                                                              
                                                           
              p                                                      f   p
                                                                                                              
                                     pizz.                                  Bog.                     
                                                                                                       
                                                                            
                                                                                                 
                                                    
                                     
                                                   
              p                                                             mf
              pizz.                  pizz.
                                                     
                                     
                                                                                     
          
              p
                                                   © 2010 Musikedition Tirol (edition e.t.)
                                                         ITMf Innsbruck
   1   2   3   4   5   6   7   8   9   10