Page 4 - 5SatzefürStreicher
P. 4

2





                                                                                                  
                                                                                                          
           17                                         Bog.                                     
                                                                                                               
                                                                   
                                      
                           
                           f p                           f
                                                                                         Bog.       
                                                                                                
                                                                                                  
                                                                     
                                                             
                                                                                             
                           
                           f p                         f                                 f
                                      pizz.                        Bog.            
                                                                                  
                                                                                                           
                                                                           
                                               
                                                                                               
                                                                 
                                                            
                                                        
                                                       f                                 f
                                                                                         
                                                       pizz.                            Bog.             
                                                                                                       
                                                             
                                                       
                           
                           f p                         f                                 f
                                       pizz.                        Bog.
                                       
                                                                                          
                                                                       
          
                                                       f                                 f
                
                      
           23                                                   
                                                                             
                                                                                         
                                                                                                         
                                                                                         3                   
                                                                                      
                                       
                                                             
                                                                                   
                              
                                                                               
                                                   
                                                                              
                                                                            
              
                                                                                             
                                                                 
                                              
                                
                            
                                       
                                                                      
                                                                            
                                                                                             
                                                                                                
                                                                            
                                                                          
                                                            
                            
                                                                                   
                                                                                          
                                   
                                
                                                                              
                                             
                                                                                           2
           28                                                                        
                                                                                                  
                                                                                      
                                                        3
              p                                                            f                  p
                                                                                      
                                               3                                
                                                                                         
                                                                                       p
              p                                                            f             
                                                                                    
                                                                                      
                                                                                         
              p                                                            f                  p
                                                                                     
                                                                                   
                                                                               
                                                                                              
                            
                                                                                                         
                                                                     
              p                                                                     f         p
                                                                                     
                                                                                   
                                                                               
                                                                         
                                                                                                        
              p                                                                     f         p
                                                   © 2010 Musikedition Tirol (edition e.t.)
                                                         ITMf Innsbruck
   1   2   3   4   5   6   7   8   9